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Preface

Building compilers has been a challenging activity since the advent of digital computers in the late 1940s 

and early 1950s. At that time, implementing the concept of automatic translation from a form familiar to 

mathematicians into computer instructions was a difficult task. One needed to figure out how to translate 

arithmetic expressions into instructions, how to store data in memory, and how to choose instructions to 

build procedures and functions. During the late 1950s and 1960s these processes were automated to the 

extent that simple compilers could be written by most computer science professionals. In fact, the 

concept of “small languages” with corresponding translators is fundamental in the UNIX community. 

From the beginning, there was a need for translators that generated efficient code: The translator must 

use the computer productively. Originally this constraint was due to computers’ small memories and 

slow speed of execution. During each generation of hardware, new architectural ideas have been added. 

At each stage the compilers have also needed to be improved to use these new machines more 

effectively. Curiously, pundits keep predicting that less efficient and less expensive translators will do 

the job. They argue that as machines keep getting faster and memory keeps expanding, one no longer 

needs an optimizing compiler. Unfortunately, people who buy bigger and faster machines want to use the 

proportionate increase in size and speed to handle bigger or more complex problems, so we still have the 

need for optimizing compilers. In fact, we have an increased need for these compilers because the 

performance of the newer architectures is sensitive to the quality of the generated code. Small changes in 

the order and choice of the instructions can have much larger effects on machine performance than 

similar choices made with the complex instruction set computing (CISC) machines of the 1970s and 

1980s.

The interplay between computer architecture and compiler performance has been legitimized with the 

development of reduced instruction set computing (RISC) architectures. Compilers and computer 

architecture have a mutually dependent relationship that shares the effort to build fast applications. To 

this end, hardware has been simplified by exposing some of the details of hardware operation, such as 

simple load-store instruction sets and instruction scheduling. The compiler is required to deal with these 

newly exposed details and provide faster execution than possible on CISC processors.



This book describes one design for the optimization and code-generation phases of such a compiler. 

Many compiler books are available for describing the analysis of programming languages. They 

emphasize the processes of lexical analysis, parsing, and semantic analysis. Several books are also 

available for describing compilation processes for vector and parallel processors. This book describes the 

compilation of efficient programs for a single superscalar RISC processor, including the ordering and 

structure of algorithms and efficient data structures.

The book is presented as a high-level design document. There are two reasons for this. Initially, I 

attempted to write a book that presented all possible alternatives so that the reader could make his or her 

own choices of methods to use. This was too bulky, as the projected size of the volume was several 

thousand pages—much too large for practical purposes. There are a large number of different algorithms 

and structures in an optimizing compiler. The choices are interconnected, so an encyclopedic approach to 

optimizing compilers would not address some of the most difficult problems.

Second, I want to encourage this form of design for large software processes. The government uses a 

three-level documentation system for describing software projects: The A-level documents are overview 

documents that describe a project as a whole and list its individual pieces. B-level documents describe 

the operation of each component in sufficient detail that the reader can understand what each component 

does and how it does it, whereas the C-level documents are low-level descriptions of each detail.

As a developer I found this structure burdensome because it degenerated into a bureaucratic device 

involving large amounts of paper and little content. However, the basic idea is sound. This book will 

describe the optimization and code-generation components of a compiler in sufficient detail that the 

reader can implement these components if he or she sees fit. Since I will be describing one method for 

each of the components, the interaction between components can be examined in detail so that all of the 

design and implementation issues are clear.

Each chapter will include a section describing other possible implementation techniques. This section 

will include bibliographic information so that the interested reader can find these other techniques.

Philosophy for Choosing Compiler Techniques

Before starting the book, I want to describe my design philosophy. When I first started writing compilers 

(about 1964), I noticed that much research and development work had been described in the literature. 

Although each of these projects is based on differing assumptions and needs, the availability of this 

information makes it easier for those who follow to use previous ideas without reinventing them. I 

therefore design by observing the literature and other implementations and choosing techniques that meet 

my needs. What I contribute is the choice of technique, the engineering of the technique to fit with other 

components, and small improvements that I have observed. 

One engineering rule of thumb must be added. It is easy to decide that one will use the latest techniques 

that have been published. This policy is dangerous. There are secondary effects from the choice of any 



optimization or code-generation technique that are observed only after the technique has been used for 

some time. Thus I try to avoid techniques that I have not seen implemented at least twice in prototype or 

production compilers. I will break this rule once or twice when I am sure that the techniques are sound, 

but no more frequently.

In the course of writing this book, my view of it has evolved. It started out as a recording of already 

known information. I have designed and built several compilers using this existing technology. As the 

book progressed, I have learned much about integrating these algorithms. What started out as a 

concatenation of independent ideas has thus become melded into a more integrated whole. What began as 

simple description of engineering choices now contains some newer ideas. This is probably the course of 

any intellectual effort; however, I have found it refreshing and encouraging.

How to Use This Book

This book is designed to be used for three purposes. The first purpose is to describe the structure of an 

optimizing compiler so that a reader can implement it or a variation (compiler writers always modify a 

design). The book’s structure reflects this purpose. The initial chapters describe the compilation phases 

and the interactions among them; later chapters describe the algorithms involved in each compilation 

phase.

This book can also be used as a textbook on compiler optimization techniques. It takes one example and 

describes each of the compilation processes using this example. Rather than working small homework 

problems, students work through alternative examples.

Practically, the largest use for this book will be informing the curious. If you are like me, you pick up 

books because you want to learn something about the subject. I hope that you will enjoy this book and 

find what you are looking for. Good reading.
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Chapter 1

Overview

What is an optimizing compiler? Why do we need them? Where do they come from? These questions are 

discussed in this chapter, along with how to use the book. Before presenting a detailed design in the body 

of the book, this introductory chapter provides an informal history of optimizing compiler development 

and gives a running example for motivating the technology in the compiler and to use throughout the rest 

of the book. 

1.1 What Is an Optimizing Compiler?

How does a programmer get the performance he expects from his application? Initially he writes the 

program in a straightforward fashion so that the correct execution of the program can be tested or proved. 

The program is then profiled and measured to see where resources such as time and memory are used, 

and modified to improve the uses of these resources. After all reasonable programmer modifications have 

been made, further improvements in performance can come only from how well the programming 

language is translated into instructions for the target machine. 

The goal of an optimizing compiler is to efficiently use all of the resources of the target computer. The 

compiler translates the source program into machine instructions using all of the different computational 

elements. The ideal translation is one that keeps each of the computational elements active doing useful 

(and nonredundant) work during each instruction execution cycle.

Of course, this idealized translation is not usually possible. The source program may not have a balanced 

set of computational needs. It may do more integer than floating point arithmetic or vice versa, or more 

load and store operations than arithmetic. In such cases the compiler must use the overstressed 

computational elements as effectively as possible.

The compiler must try to compensate for unbalanced computer systems. Ideally, the speed of the 

processor is matched to the speed of the memory system, which are both matched to the speed of the 

input/output (I/O) system. In modern reduced instruction set computer (RISC) systems this is not true: 

The processors are much faster than the memory systems. To be able to use the power of the processor, 

the compiler must generate code that decreases the use of the memory system by either keeping values in 

registers or organizing the code so that needed data stays in the memory cache.

An added problem is fetching instructions. A significant fraction of the memory references are references 

to instructions. One hopes that the instructions stay in one of the memory caches; however, this is not 

always the case. When the instructions do not fit in the cache, the compiler should attempt to generate as 

few instructions as possible. When the instructions do fit in the cache and there are heavy uses of data, 



then the compiler is free to add more instructions to decrease the wait for data. Achieving a balance is a 

difficult catch-22.

In summary, the optimizing compiler attempts to use all of the resources of the processor and memory as 

effectively as possible in executing the application program. The compiler must transform the program to 

regain a balanced use of computational elements and memory references. It must choose the instructions 

well to use as few instructions as possible while obtaining this balance. Of course, all of this is 

impossible, but the compiler must do as well as it can.

1.2 A Biased History of Optimizing Compilers

Compiler development has a remarkable history, frequently ignored. Significant developments started in 

the 1950s. Periodically, pundits have decided that all the technology has already been developed. They 

have always been proven wrong. With the development of new high-speed processors, significant 

compiler developments are needed today. I list here the compiler development groups that have most 

inspired and influenced me. There are other groups that have made major contributions to the field, and I 

do not mean to slight them. 

Although there is earlier work on parsing and compilation, the first major compiler was the Fortran 

compiler (Backus) for the IBM 704/709/7090/7094. This project marked the watershed in compiler 

development. To be accepted by programmers, it had to generate code similar to that written by machine 

language programmers, so it was a highly optimizing compiler. It had to compile a full language, 

although the design of the language was open to the developers. And the technology for the project did 

not exist; they had to develop it. The team succeeded beautifully, and their creation was one of the best 

compilers for about ten years. This project developed the idea of compiler passes or phases.

Later, again at IBM, a team developed the Fortran/Level H compilers for the IBM 360/370 series of 

computers. Again, these were highly optimizing compilers. Their concept of quadruple was similar to the 

idea of an abstract assembly language used in the design presented in this book. Subsequent 

improvements to the compilers by Scarborough and Kolsky (1980) kept this type of compiler one of the 

best for another decade.

During the late 1960s and throughout the 1970s, two research groups continued to develop the ideas that 

were the basis of these compilers as well as developing new ideas. One group was led by Fran Allen at 

IBM, the other by Jack Schwartz at New York University (NYU). These groups pioneered the ideas of 

reaching definitions and bit-vector equations for describing program transformation conditions. Much of 

their work is in the literature; if you can get a copy of the SETL newsletters (NYU 1973) or the reports 

associated with the SETL project, you will have a treat.

Other groups were also working on optimization techniques. William Wulf defined a language called 

Bliss (Wulf et al. 1975). This is a structured programming language for which Wulf and his team at 

Carnegie Mellon University (CMU) developed optimizing compiler techniques. Some of these 



techniques were only applicable to structured programs, whereas others have been generalized to any 

program structure. This project evolved into the Production-Quality Compiler-Compiler (PQCC) project, 

developing meta-compiler techniques for constructing optimizing compilers (Leverett et al. 1979). These 

papers and theses are some of the richest and least used sources of compiler development technology.



Other commercial companies were also working on compiler technology. COMPASS developed 

compiler techniques based on p-graph technology (Karr 1975). This technology was superior to reaching 

definitions for compiler optimization because the data structures were easily updated; however, the initial 

computation of p-graphs was much slower than reaching definitions. P-graphs were transformed by Reif 

(Reif and Lewis 1978) and subsequent developers at IBM Yorktown Heights (Cytron et al. 1989) into the 

Static Single Assignment Form of the flow graph, one of the current flow graph structures of choice for 

compiler development. 

Ken Kennedy, one of the students at NYU, established a compiler group at Rice University to continue 

his work in compiler optimization. Initially, the group specialized in vectorization techniques. 

Vectorization required good scalar optimization, so the group continued work on scalar optimization 

also. Some of the most effective work analyzing multiple procedures (interprocedural analysis) has been 

performed at Rice under the group led by Keith Cooper (1988, 1989). This book uses much of the flow 

graph structure designed by the Massive Scalar Compiler Project, the group led by Cooper.

With the advent of supercomputers and RISC processors in the later 1970s and early 1980s, new 

compiler technology had to be developed. In particular, instructions were pipelined so that the values 

were available when needed. The instructions had to be reordered to start a number of other instructions 

before the result of the first instruction was available. These techniques were first developed by compiler 

writers for machines such as the Cray-1. An example of such work is Richard Sites’ (1978) paper on 

reordering Cray-1 assembly language. Later work by the IBM 801 (Auslander and Hopkins 1982) project 

and Gross (1983) at CMU applied these technques to RISC processors. Other work in this area includes 

the papers describing the RS6000 compilers (Golumbic 1990 and Warren 1990) and research work 

performed at the University of Wisconsin on instruction scheduling.

In the 1970s and early 1980s, register allocation was a difficult problem: How should the compiler assign 

the values being computed to the small set of physical registers to minimize the number of times data 

need to be moved to and from memory? Chaitin (1981, 1982) reformulated the problem as a graph-

coloring problem and developed heuristics for coloring the graphs that worked well for programs with 

complex flows. The PQCC project at Carnegie Mellon developed a formulation as a type of bin-packing 

problem, which worked best with straight-line or structure procedures. The techniques developed here 

are a synthesis of these two techniques using some further work by Laurie Hendron at McGill University.

1.3 What Have We Gained with All of This Technology?

Considering this history, all the technology necessary to build a high-performance compiler for modern 

RISC processors existed by about 1972, certainly by 1980. What is the value of the more recent 

research? The technology available at those times would do the job, but at a large cost. More recent 

research in optimizing compilers has led to more effective and more easily implemented techniques for 

optimization. Two examples will make this clearer. The Fortran/Level H compiler was one of the most 



effective optimizing compilers of the late 1960s and early 1970s. It used an algorithm to optimize loops 

based on identifying the nesting of loops. In the late 1970s Etienne Morel developed the technique called 

Elimination of Partial Redundancies that performed a more effective code motion without computing 

anything about loops (Morel and Renvoise 1979). 

Similarly, the concepts of Static Single Assignment Form have made a number of transformation 

algorithms similar and more intuitive. Constant propagation, developed by Killdall (1973), seemed 

complex. Later formulations by Wegman and Zadeck (1985) make the technique seem almost intuitive.

The new technology has made it easier to build optimizing compilers. This is vital! These compilers are 

large programs, prone to all of the problems that large programs have. When we can simplify a part of 

the compiler, we speed the development and compilation times and decrease the number of bugs (faults, 

defects) that occur in the compiler. This makes a cheaper and more reliable product.

1.4 Rules of the Compiler Back-End Game

The compiler back end has three primary functions: to generate a program that faithfully represents the 

meaning of the source program, to allocate the resources of the machine efficiently, and to recast the 

program in the most efficient form that the compiler can deduce. An underlying rule for each of these 

functions is that the source program must be faithfully represented. 

Unfortunately, there was a time when compiler writers considered it important to get most programs right 

but not necessarily all programs. When the programmer used some legal features in unusual ways, the 

compiler might implement an incorrect version of the program. This gave optimizing compilers a bad 

name.

It is now recognized that the code-generation and optimization components of the compiler must exactly 

represent the meaning of the program as described in the source program and in the language reference 

manual for the programming language. This does not mean that the program will give exactly the same 

results when compiled with optimization turned on and off. There are programs that violate the language 

definition in ways not identifiable by a compiler. The classic example is the use of a variable before it is 

given a value. These programs may get different results with optimization turned on and turned off.

Fortunately, standards groups are becoming more aware of the needs of compiler writers when 

describing the language standards. Each major language standard now describes in some way the limits 

of compiler optimization. Sometimes this is done by leaving certain aspects of the language as 

“undefined” or “implementation defined.” Such phrases mean that the compiler may do whatever it 

wishes when it encounters that aspect of the language. However, be cautious—the user community 

frequently has expectations of what the compiler will do in those cases, and a compiler had better honor 

those expectations.

What does the compiler do when it encounters a portion of the source program that uses language 



facilities in a way that the compiler does not expect? It must make a conservative choice to implement 

that facility, even at the expense of runtime performance for the program. Even when conservative 

choices are being made, the compiler may be clever. It might, for example, compile the same section of 

code in two different ways and generate code to check which version of the code is safe to use.



1.5 Benchmarks and Designing a Compiler

Where does the compiler writer find the set of improvements that must be included in an optimizing 

compiler? How is one variant of a particular optimization chosen over another? The compiler writer uses 

information about the application area for the target machine, the languages being compiled, and good 

sense to choose a particular set of optimizations and their organization. 

Any application area has a standard set of programs that are important for that area. Sorting and 

databases are important for commercial applications. Linear algebra and equation solution are important 

for numeric applications. Other programs will be important for simulation. The compiler writer will 

investigate these programs and determine what the compiler must do to translate these programs well. 

While doing this, the compiler writer and his client will extract sample code from these programs. These 

samples of code become benchmarks that are used to measure the success of the compiler.

The source languages to be compiled are also investigated to determine the language features that must 

be handled. In Fortran, an optimizing compiler needs to do strength reduction since the programmer has 

no mechanism for simplifying multiplications. In C, strength reduction is less important (although still 

useful); however, the compiler needs to compile small subroutines well and determine as much 

information about pointers as possible.

There are standard optimizations that need to be implemented. Eliminating redundant computations and 

moving code out of loops will be necessary in an optimizing compiler for an imperative language. This is 

actually a part of the first criterion, since these optimizations are expected by most application 

programmers.

The compiler writer must be cautious. It is easy to design a compiler that compiles benchmarks well and 

does not do as well on general programs. The Whetstone benchmark contained a kernel of code that 

could be optimized by using a trigonometric identity. The SPEC92 benchmarks have a kernel, EQNTOT, 

that can be optimized by clever vectorization of integer instructions.

Should the compiler writer add special code for dealing with these anomalous benchmarks? Yes and no. 

One has to add the special code in a competitive world, since the competition is adding it. However, one 

must realize that one has not really built a better compiler unless there is a larger class of programs that 

finds the feature useful. One should always look at a benchmark as a source of general comments about 

programming. Use the benchmark to find general improvements. In summary, the basis for the design of 

optimizing compilers is as follows:

1.  Investigate the important programs in the application areas of interest. Choose compilation 

techniques that work well for these programs. Choose kernels as benchmarks. 

2.  Investigate the source languages to be compiled. Identify their weaknesses from a code quality 



point of view. Add optimizations to compensate for these weaknesses. 

3.  Make sure that the compiler does well on the standard benchmarks, and do so in a way that 

generalizes to other programs. 

1.6 Outline of This Book

Before developing a compiler design, the writer must know the requirements for the compiler. This is as 

hard to determine as writing the compiler. The best way that I have found for determining the 

requirements is to take several typical example programs and compile them by hand, pretending that you 

are the compiler. No cheating! You cannot do a transformation that cannot be done by some compiler 

using some optimization technique. 

This is what we do in Chapter 2 for one particular example program. It is too repetitious to do this for 

multiple examples. Instead, we will summarize several other requirements placed on the compiler that 

occur in other examples.

Then we dig into the design. Each chapter describes a subsequent phase of the compiler, giving the 

theory involved in the phase and describing the phase in a high-level pseudo-code.

We assume that the reader can develop detailed data structures from the high-level descriptions given 

here. Probably the most necessary requirement for a compiler writer is to be a “data structure junkie.” 

You have to love complex data structures to enjoy writing compilers.

1.7 Using This Book as a Textbook

This compiler design can be used as a textbook for a second compiler course. The book assumes that the 

reader is familiar with the construction of compiler front ends and the straightforward code-generation 

techniques taught in a one-term compiler course. I considered adding sets of exercises to turn the book 

into a textbook. Instead, another approach is taken that involves the student more directly in the design 

process.

The example procedure in Figure 1.1 is used throughout the book to motivate the design and demonstrate 

the details. As such, it will be central to most of the illustrations in the book. Students should use the 

three examples in Figures 1.2-1.4 as running illustrations of the compilation process. For each chapter, 

the student should apply the technology developed therein to the example. The text will also address 

these examples at times so the student can see how his or her work matches the work from the text.



Figure 1.1  Running Exercise Throughout Book

Figure 1.2  Matrix Multiply Example



Figure 1.3  Computing the Maximum Monotone Subsequence

Figure 1.4  Recursive Version of a Binary Search



Figure 1.2 is a version of the classic matrix multiply algorithm. It involves a large amount of floating 

point computation together with an unbalanced use of the memory system. As written, the inner loop 

consists of two floating point operations together with three load operations and one store operation. The 

problem will be to get good performance from the machine when more memory operations are occurring 

than computations. 

Figure 1.3 computes the length of the longest monotone subsequence of the vector A. The process uses 

dynamic programming. The array C(I) keeps track of the longest monotone sequence that starts at 

position I. It computes the next element by looking at all of the previously computed subsequences that 

can have X(I) added to the front of the sequence computed so far. This example has few floating point 

operations. However, it does have a number of load and store operations together with a significant 

amount of conditional branching.

Figure 1.4 is a binary search algorithm written as a recursive procedure. The student may feel free to 

translate this into a procedure using pointers on a binary tree. The challenge here is to optimize the use of 

memory and time associated with procedure calls.

I recommend that the major grade in the course be associated with a project that prototypes a number of 

the optimization algorithms. The implementation should be viewed as a prototype so that it can be 

implemented quickly. It need not handle the complex memory management problems existing in real 

optimizing compilers.
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Chapter 2

Compiler Structure 

The compiler writer determines the structure of a compiler using information concerning the source 

languages to be compiled, the required speed of the compiler, the code quality required for the target 

computer, the user community, and the budget for building the compiler. This chapter is the story of the 

process the compiler writer must go through to determine the compiler structure. 

The best way to use this information to design a compiler is to manually simulate the compilation 

process using the same programs provided by the user community. For the sake of brevity, one principle 

example will be used in this book. We will use this example to determine the optimization techniques 

that are needed, together with the order of the transformations.

For the purpose of exposition this chapter simplifies the process. First we will describe the basic 

framework, including the major components of the compiler and the structure of the compilation unit 

within the compiler. Then we will manually simulate an example program.

The example is the Fortran subroutine in Figure 2.1. It finds the largest element in each column of a 

matrix, saving both the index and the absolute value of the largest element. Although it is written in 

Fortran, the choice of the source language is not important. The example could be written in any of the 

usual source languages. Certainly, there are optimizations that are more important in one language than 

another, but all languages are converging to a common set of features, such as arrays, pointers, 

exceptions, procedures, that share many characteristics. However, there are special characteristics of each 

source language that must be compiled well. For example, C has a rich set of constructs involving 

pointers for indexing arrays or describing dynamic storage, and Fortran has special rules concerning 

formal parameters that allow increased optimization.



Figure 2.1  Finding Largest Elements in a Column

2.1 Outline of the Compiler Structure

This book is a simplification of the design process. To design a compiler from scratch one must iterate 

the process. First hypothesize a compiler structure. Then simulate the compilation process using this 

structure. If it works as expected (it won‘t) then the design is acceptable. In the process of simulating the 

compilation, one will find changes one wishes to make or will find that the whole framework does not 

work. So, modify the framework and simulate again,. Repeat the process until a satisfactory framework 

is found. If it really does not work, scrap the framework and start again. 

There are two major decisions to be made concerning the structure: how the program is represented and 

in what order the transformations are performed. The source program is read by the compiler front end 

and then later translated into a form, called the intermediate representation (IR), for optimization, code 

generation, and register allocation. Distinct collections of transformations, called phases, are then applied 

to the IR.

2.1.1 Source Program Representation

The source program must be stored in the computer during the translation process. This form is stored in 

a data structure called the IR. Past experience has shown that this representation should satisfy three 

requirements:

1.  The intermediate form of the program should be stored in a form close to machine language, 

with only certain operations kept in high-level form to be “lowered” later. This allows each phase 



to operate on all instructions in the program. Thus, each optimization algorithm can be applied to 

all of the instructions. If higher-level operators are kept in the IR, then the subcomponents of 

these operations cannot be optimized or must be optimized later by specialized optimizers. 

2.  Each phase of the compiler should retain all information about the program in the IR. There 

should be no implicit information, that is, information that is known after one phase and not after 

another. This means that each phase has a simple interface and the output may be tested by a 

small number of simulators. An implication of this requirement is that no component of the 

compiler can use information about how another component is implemented. Thus components 

can be modified or replaced without damage to other components. 

3.  Each phase of the compiler must be able to be tested in isolation. This means that we must 

write support routines that read and write examples of the IR. The written representation must be 

in either a binary or textual representation. 



The assembly program also has program labels that represent the places to which the program can branch. 

To represent this concept, the intermediate representation is divided into blocks representing straight-line 

sequences of instructions. If one instruction in a block is executed, then all instructions are executed. Each 

block starts with a label (or is preceded by a conditional branching instruction) and ends with a branching 

instruction. Redundant branches are added to the program to guarantee that there is a branch under every 

possible condition at the end of the block. In other words, there is no fall-through into the next block.

The number of operation codes is large. There is a distinct operation code for each instruction in the target 

machine. Initially these are not used; however, the lowering process will translate the set of machine-

independent operation codes into the target machine codes as the compilation progresses. There is no need 

to list all of the operation codes here. Instead the subset of instructions that are used in the examples is 

listed in Figure 2.2.

Now the source program is modeled as a directed graph, with the nodes being the blocks. There is a 

directed edge between two blocks if there is a possible branch from the first block to the second. A unique 

node called Entry represents the entry point for the source program. The entry node has no predecessors in 

the graph. Similarly, a unique node called Exit represents the exit point for the source program, and that 

node has no successors. In Figure 2.3 the entry node is node B0, and the exit node is node B5.

Figure 2.2  Operation Codes Used In Examples



Figure 2.3  Example Flow Graph

The execution of the source program is modeled by a path through the graph. The path starts at the entry 

node and terminates at the exit node. The computations within each node in the path are executed in order 

of the occurrence of nodes on the path. In fact, the computations within the node are used to determine the 

next node in the path. In Figure 2.3, one possible path is B0, B1, B2, B4, B1, B3, B4, B5. This execution 

path means that all computations in B0 are executed, then all computations in B1, then B2, and so on. 

Note that the computations in B1 and B4 are executed twice. 

2.1.2 Order of Transformations

Since the compiler structure is hard to describe linearly, the structure is summarized here and then 

reviewed during the remainder of the chapter. The rest of the book provides the details. The compiler is 

divided into individual components called phases as shown in Figure 2.4. An overview of each of the 

phases is presented next. 

The compiler front end is language specific. It analyzes the source file being compiled and performs all 

lexical analysis, parsing, and semantic checks. It builds an abstract syntax tree and symbol table. I will not 

discuss this part of the compiler, taking it as a given, because most textbooks do an excellent job of 

describing it. There is a distinct front end for each language, whereas the rest of the compiler can be shared 

among compilers for different languages as long as the specialized characteristics of each language can be 

handled.



After the front end has built the abstract syntax tree, the initial optimization phase builds the flow graph, or 

intermediate representation. Since the intermediate representation looks like an abstract machine language, 

standard single-pass code-generation techniques, such as used in 1cc (Frazer and Hanson 1995), can be 

used to build the flow graph. Although these pattern-matching techniques can be used, the flow graph is 

sufficiently simple that a straightforward abstract syntax tree walk generating instructions on the fly is 

sufficient to build the IR. While building the flow graph some initial optimizations can be performed on 

instructions within each block.

The Dominator Optimization phase performs the initial global optimizations. It identifies situations where 

values are constants, where two computations are known to have the same value, and where instructions 

have no effect on the results of the program. It identifies and eliminates most redundant computations. At 

the same time it reapplies the optimizations that have already occurred within a single block. It does not 

move instructions from one point of the flow graph to another.



Figure 2.4  Compiler Structure

The Interprocedural Optimization phase analyzes the procedure calls within this flow graph and the flow 

graphs of all of the other procedures within the whole program. It determines which variables might be 

modified by each procedure call, which variables and expressions might be referencing the same memory 

location, and which parameters are known to be constants. It stores this information for other phases to 

use.

The Dependence Optimization phase attempts to optimize the time taken to perform load and store 

operations. It does this by analyzing array and pointer expressions to see if the flow graph can be 

transformed to one in which fewer load/stores occur or in which the load and store operations that occur 

are more likely to be in one of the cache memories for the RISC chip. To do this it might interchange or 

unroll loops.

The Global Optimization phase lowers the flow graph, eliminating the symbolic references to array 

expressions and replacing them with linear address expressions. While doing so, it reforms the address 

expressions so that the operands are ordered in a way that ensures that the parts of the expressions that are 

dependent on the inner loops are separated from the operands that do not depend on the inner loop. Then it 

performs a complete list of global optimizations, including code motion, strength reduction, and dead-code 

elimination.

After global optimization, the exact set of instructions in the flow graph has been found. Now the compiler 

must allocate registers and reorder the instructions to improve performance. Before this can be done, the 

flow graph is transformed by the Limiting Resources phase to make these later phases easier. The Limiting 

Resources phase modifies the flow graph to reduce the number of registers needed to match the set of 

physical registers available. If the compiler knows that it needs many more registers than are available, it 

will save some temporaries in memory. It will also eliminate useless copies of temporaries.

Next an initial attempt to schedule the instructions is performed. Register allocation and scheduling 

conflict, so the compiler attempts to schedule the instructions. It counts on the effects of the Limiting 

Resources phase to ensure that the register allocation can be performed without further copying of values 

to memory. The instruction scheduler reorders the instructions in several blocks simultaneously to 

decrease the time that the most frequently executed blocks require for execution.



After instruction scheduling, the Register Allocation phase replaces temporaries by physical registers. 

This is a three-step process in which temporaries computed in one block and used in another are assigned 

first, then temporaries within a block that can share a register with one already assigned, and finally the 

temporaries assigned and used in a single block. This division counts on the work of the Limiting 

Resources phase to decrease the likelihood that one assignment will interfere with a later assignment. 

It is hoped that the Register Allocation phase will not need to insert store and load operations to copy 

temporaries into memory. If such copies do occur, then the Instruction Scheduling phase is repeated. In 

this case, the scheduler will only reschedule the blocks that have had the instructions inserted.

Finally, the IR is in the form in which it represents an assembly language procedure. The object module 

is now written in the form needed by the linker. This is a difficult task because the documentation of the 

form of object modules is notoriously inaccurate. The major work lies in discovering the true form. After 

that it is a clerical (but large) task to create the object module.

2.2 Compiler Front End

To understand each of the phases, we simulate a walk-through of our standard example in Figure 2.1 for 

each phase, starting with the front end. The front end translates the source program into an abstract 

syntax tree. As noted earlier, I will not discuss the operation of the front end; however, we do need to 

understand the abstract syntax tree. The abstract syntax tree for the program in Figure 2.1 is given in 

Figure 2.5. 

There is a single tree for each procedure, encoding all of the procedure structure. The tree is represented 

using indentation; the subtrees of each node are indented an extra level. Thus the type of a node occurs at 

one indentation and the children are indented slightly more. I am not trying to be precise in describing 

the abstract syntax tree. The name for the type of each node was chosen to represent the node naturally to 

the reader. For example, the nodes with type “assign” are assignment nodes.

The “list” node represents a tree node with an arbitrary number of children, used in situations in which 

there can be an arbitrary number of components, such as blocks of statements. The “symbol” node takes 

a textual argument indicating the name of the variable; of course, this will actually be represented as a 

pointer to the symbol table.

The “fetch” node differentiates between addresses and values. This compiler has made a uniform 

assumption about expressions: Expressions always represent values. Thus the “assign” node takes two 

expressions as operands—one representing the address of the location for getting the result and the other 

representing the value of the right side of the assignment. The “fetch” node translates between addresses 

and values. It takes one argument, which is the address of a location. The result of the “fetch” node is the 

value stored in that location.





Figure 2.5  Abstract Syntax Tree for MAXCOL

Note that this tree structure represents the complete structure of the program, indicating which parts of 

the subroutine are contained in other parts. 

2.3 Building the Flow Graph

The abstract syntax tree is translated into the flow graph using standard code generation techniques 

described in introductory compiler books. The translation can be done in two ways. The more advanced 

method is to use one of the tree-based pattern-matching algorithms on the abstract syntax tree to derive 



the flow graph. This technique is not recommended here because of the RISC nature assumed for the 

target machine. Complex instructions will be generated later by pattern matching the flow graph. Instead, 

the abstract syntax tree should be translated into the simplest atomic instructions possible. This procedure 

allows more opportunity for optimization. 

Thus, the translation should occur as a single walk of the abstract syntax tree. Simple instructions should 

be generated wherever possible. Normal operations such as addition and multiplication can be lowered to 

a level in which each entry in the program flow graph represents a single instruction. However, 

operations that need to be analyzed later (at the equivalent of source program level) are translated into 

higher-level operations equivalent to the source program construct. These will later be translated into 

lower-level operations after completion of the phases that need to analyze these operations. The 

following four classes of operations should be kept in higher-level form:

1.  A fetch or store of a subscript variable, A [i,j,k] is kept as a single operation, with operands 

being the array name and the expressions for the subscripts. Keeping subscripted variables in this 

form rather than linearizing the subscript expression allows later dependence analysis to solve sets 

of linear equations and inequalities involving the subscripts. 

2.  Extra information is kept with normal load and store operations also. This information is 

needed to determine which store operations can modify locations loaded by load operations. This 

is particularly important in languages involving pointers. Extra analysis, called pointer alias 

analysis, is needed to determine which storage locations are modified. Loads and stores of 

automatic variables, that is, variables declared within a routine whose values are lost at the end of 

the routine, are not generated. Instead these values are handled as if they were temporaries within 

the program flow graph. 

3.  Subroutine calls are kept in terms of the expression representing the name of the procedure and 

the expression representing the arguments.Methods for passing the arguments, such as call-by-

value and call-by-reference, are not expanded. This allows more detailed analysis by the 

interprocedural analysis components later in the compiler. 

4.  Library routines are handled differently than other procedure calls. If a library procedure is 

known to be a pure function it is handled as if it were an operator. This allows the use of identities 

involving the library routines. Other procedure calls may be used in other parts of the analysis of 

the program, for example, calls on malloc are known to return either a null pointer or a pointer to 

a section of memory unreferenced in other parts of the program. 



A straightforward translation will result in the flow graph shown in Figure 2.6. It is shown here to 

describe the process of translation. It is not actually generated, since certain optimizations will be 

performed during the translation process. Note that the temporaries are used in two distinct ways. Some 

temporaries, such as T5, are used just like local variables, holding values that are modified as the 

program is executed. Other temporaries, such as T7, are pure functions of their arguments. In the case of 

T7, it always holds the constant 1. For these temporaries the same temporary is always used for the result 

of the same operation. Thus any load of the constant 1 will always be into T7. The translation process 

must guarantee that an operand is evaluated before it is used. 

To guarantee that the same temporary is used wherever an expression is computed, a separate table called 

the formal temporary table is maintained. It is indexed by the operator and the temporaries of the 

operands and constants involved in the instruction. The result of a lookup in this table is the name of the 

temporary for holding the result of the operation. The formal temporary table for the example routine is 

shown in Figure 2.7. Some entries that will be added later are listed here for future reference.

What is the first thing that we observe about the lengthy list of instructions in Figure 2.6? Consider block 

B1. The constant 1 is loaded six times and the expression I - 1 is evaluated three times. A number of 

simplifications can be performed as the flow graph is created:

•  If there are two instances of the same computation without operations that modify the operands 

between the two instances, then the second one is redundant and can be eliminated since it will 

always compute the same value as the first. 





Figure 2.6  Initial Program Representation



Figure 2.7  Initial Formal Temporary Table

• Algebraic identities can be used to eliminate operations. For example, A * 0 can be replaced by 

0. This can only occur if the side effects of computing A can be ignored. There is a large 

collection of algebraic identities that may be applied; however, a small set is always applied with 



the understanding that new algebraic identities can be added if occasions occur where the 

identities can improve the program. 

• Constant folding transforms expressions such as 5 * 7 into the resulting number, 35. This 

frequently makes other simplifications possible. The arithmetic must be done in a form that 

exactly mimics the arithmetic of the target machine. 

These transformations usually remove about 50 percent of the operations in the procedure. The rest of the 

analysis in the compiler is therefore faster since about half of the operations that must be scanned during 

each analysis have been eliminated. The result of these simplifications is given in Figure 2.8. 

2.4 Dominator Optimizations

The preliminary optimization phase takes the program represented as a program flow graph as input. It 

applies global optimization techniques to the program and generates an equivalent program flow graph as 

the output. These techniques are global in the sense that the transformations take into account possible 

branching within each procedure. 

There are two global optimization phases in this compiler. The initial phase performs as much global 

optimization as possible without moving computations in the flow graph. After interprocedural analysis 

and dependence optimization phases have been executed, a more general global optimization phase is 

applied to clean up and improve the flow graphs further. The following global optimization 

transformations are applied.

•  If there are two instances of a computation X * Y and the first one occurs on all paths leading 

from the Entry block to the second computation, then the second one can be eliminated. This is a 

special case of the general elimination of redundant expressions, which will be performed later. 

This simple case accounts for the largest number of redundant expressions, so much of the work 

will be done here before the general technique is applied. 

• Copy propagation or value propagation is performed. If an X is a copy of Z, then uses of X can 

be replaced by uses of Z as long as neither X nor Z changes between the point at which the copy is 

made and the point of use. This transformation is useful for improving the program flow graph 

generated by the compiler front end. There are many compiler-generated temporaries such as loop 

counters or components of array dope information that are really copy operations. 





Figure 2.8  Flow Graph after Simplifications

• Constant propagation is the replacement of uses of variables that have been assigned a constant 

value by the constant itself. If a constant is used to determine a conditional branch in the program, 

the alternative branch is not considered. 

•  As with local optimization, algebraic identities, peephole optimizations, and constant folding 

will also be performed as the other optimizations are applied. 



The following global optimizations are intentionally not applied because they make the task of 

dependence analysis more difficult later in the compiler.

• Strength reduction is not applied. Strength reduction is the transformation of multiplication by 

constants (or loop invariant expressions) into repeated additions. More precisely, if one has an 

expression I * 3 in a loop and I is incremented by 1 each time through the loop, then the 

computation of I * 3 can be replaced by a temporary variable T that is incremented by 3 each time 

through the loop. 

• Code motion is not applied. A computation X * Y can be moved from within a loop to before the 

loop when it can be shown that the computation is executed each time through the loop and that 

the operands do not change value within the loop. This transformation inhibits loop interchange, 

which is performed to improve the use of the data caches, so it is delayed until the later global 

optimization phase. 

Now inspect the flow graph, running your finger along several possible paths through the flow graph 

from the start block B0 to the exit block B5. The constant 1 is computed repeatedly on each path. More 

expensive computations are also repeated. Look at blocks B2 and B6. Many of the expressions computed 

in B6 are also computed in B2. Since B2 occurs on each path leading to B6, the computations in B6 are 

unnecessary.

What kind of technology can cheaply eliminate these computations? B2 is the dominator of B6 (this will 

be defined more precisely shortly), meaning that B2 occurs on each path leading from B0 to B6. There is 

a set of algorithms applied to the Static Single Assignment Form (to be defined shortly) of the flow graph 

that can eliminate repeated computations of constants and expressions when they already occur in the 

dominator. Some Static Single Assignment Form algorithms will be in the compiler anyway, so we will 

use this form to eliminate redundant computations where a copy of the computation already occurs in the 

dominator. This is an inexpensive generalization of local optimizations used during the construction of 

the flow graph, giving the results in Figure 2.9.

Repeat the exercise of tracing paths through the flow graph. Now there are few obvious redundant 

expressions. There are still some, however. Computations performed each time through the loop have not 

been moved out of the loop. Although they do not occur in this example, there are usually other 

redundant expressions that are not made redundant by this transformation.

Where are most of the instructions? They are in block B2, computing the addresses used to load array 

elements. This address expression changes each time through the loop, so it cannot be moved out of the 

loop that starts block B2. It changes in a regular fashion, increasing by 8 each time through the loop, so 

the later global optimization phase will apply strength reduction to eliminate most of these instructions.



Figure 2.9  After Dominator Value Numbering



2.5 Interprocedural Analysis

All other phases of the compiler handle the program flow graph for one procedure at a time. Each phase 

accepts as input the program flow graph (or abstract syntax tree) and generates the program flow graph 

as a result. The interprocedural analysis phase accumulates the program flow graphs for each of the 

procedures. It analyzes all of them, feeding the program flow graphs for each procedure, one at a time, to 

the rest of the phases of the compiler. The procedures are not provided in their original order. In the 

absence of recursion, a procedure is provided to the rest of the compiler before the procedures that call it. 

Hence more information can be gathered as the compilation process proceeds. 

The interprocedural analysis phase computes information about procedure calls for other phases of the 

compiler. In the local and global optimization phases of the compiler, assumptions must be made about 

the effects of procedure calls. If the effects of the procedure call are not known, then the optimization 

phase must assume that all values that are known to that procedure and all procedures that it might call 

can be changed or referenced by the procedure call. This is an inconvenient assumption in modern 

languages, which encourage procedures (or member functions) to structure the program.

To avoid these conservative assumptions about procedure calls, this phase computes the following 

information for each procedure call:

MOD

The set of variables that might be modified by this procedure call. 

REF

The set of variables that might be referenced by this procedure call. 

Interprocedural analysis also computes information about the relationships and values of the formal 

parameters of a procedure, including the following information: 

Alias

With call-by-reference parameters, one computes which parameters possibly reference the same 

memory location as another parameter or global variable. 

Constant

The parameters that always take the same constant value at all calls of the procedure. This 

information can be used to improve on the constant propagation that has already occurred. 

When array references are involved, the interprocedural analysis phase attempts to determine which part 

of the array has been modified or referenced. Approximations must be made in storing this information 

because only certain shapes of storage reference patterns will be stored. When the actual shape does not 

fit one of the usual reference patterns, a conservative choice will be made to expand the shape to one of 

the chosen forms. 



2.6 Dependence Optimization

The purpose of dependence optimization for a RISC processor is to decrease the number of references to 

memory and improve the pattern of memory references that do occur. 

This goal can be achieved by restructuring loops so that fewer references to memory are made on each 

iteration. The program is transformed to eliminate references to memory, as in Figure 2.10, in which a 

transformation called scalar replacement is used to hold the value of A(I), which is used on the next 

iteration of the loop as the value A(I-1). Classic optimization techniques cannot identify this possibility, 

but the techniques of dependence optimization can. A more complex transformation called unroll and 

jam can be used to eliminate more references to memory for nested loops.

When the references to memory cannot be eliminated completely, dependence-based optimization can be 

used to improve the likelihood that the values referenced are in the cache, thus providing faster reference 

to memory. The speed of modern processors exceeds the speed of their memory systems. To compensate, 

one or more cache memory systems have been added to retain the values of recently referenced memory 

locations. Since recently referenced memory is likely to be referenced again, the hardware can return the 

value saved in the cache more quickly than if it had to reference the memory location again.

Figure 2.10  Example of Scalar Replacement

Figure 2.11  Striding Down the Columns

Consider the Fortran fragment in Figure 2.11 for copying array A into B twice. In Fortran, the elements 

of a column are stored in sequential locations in memory. The hardware will reference a particular 

element. The whole cache line for the element will be read into the cache (typically 32 bytes to 128 

bytes), but the next element will not come from the cache line; instead, the next element is the next 

element in the row, which may be very far away in memory. By the time the inner loop is completed and 



the next iteration of the outer loop is executing, the current elements in the cache will likely have been 

removed.

The dependence-based optimizations will transform Figure 2.11 into the right-hand column. The same 

computations are performed, but the elements are referenced in a different order. Now the next element 

from A is the next element in the column, thus using the cache effectively.

The phase will also unroll loops to improve later instruction scheduling, as shown in Figure 2.12. The left 

column is the original loop; the right column is the unrolled loop. In the original loop, the succeeding 

phases of the compiler would generate instructions that would require that each store to B be executed 

before each subsequent load from A. With the loop unrolled, the loads from A may be interwoven with 

the store operations, hiding the time it takes to reference memory. Another optimization called software

pipelining is performed later, which increases the amount of interweaving even more.

Figure 2.12  Original (left) and Unrolled (right) Loop

This book will not address the concepts of parallelization and vectorization, although those ideas are 

directly related to the work here. These concepts are covered in books by Wolfe (1996) and Allen and 

Kennedy.

2.7 Global Optimization

The global optimization phase cleans up the flow graph transformed by the earlier phases. At this point 

all global transformations that need source-level information have been applied or the information has 

been stored with the program flow graph in an encoded form. Before the general algorithm is performed, 

several transformations need to be performed to simplify the flow graph. These initial transformations 

are all based on a dominator-based tree walk and the static single assignment method. The optimizations 

include the original dominator optimizations together with the following. 

• Lowering: The instructions are lowered so that each operation in the flow graph represents a 

single instruction in the target machine. Complex instructions, such as subscripted array 

references, are replaced by the equivalent sequence of elementary machine instructions. 

Alternatively, multiple instructions may be folded into a single instruction when constants, rather 



than temporaries holding the constant value, can occur in instructions. 

• Reshaping: Before the global optimization techniques are applied, the program is transformed to 

take into account the looping structure of the program. Consider the expression I * J * K

occurring inside a loop, with I being the index for the innermost loop, J the index for the next 

loop, and K the loop invariant. The normal associativity of the program language would evaluate 

this as (I * J) *K when it would be preferable to compute it as I * (J * K) because the computation 

of J * K is invariant inside the innermost loop and so can be moved out of the loop. At the same 

time we perform strength reduction, local redundant expression elimination, and algebraic 

identities.

• Strength Reduction: Consider computations that change by a regular pattern during consecutive 

iterations of a loop. The major example is multiplication by a value that does not change in the 

loop, such as I * J where J does not change and I increases by 1. The multiplication can be 

replaced by a temporary that is increased by J each time through the loop. 

• Elimination: To assist strength reduction and reshaping, the redundant expression elimination 

algorithm in the dominator optimization phase is repeated. 



The techniques proposed here for code motion are based on a technique called “elimination of partial 

redundancies” devised by Etienne Morel (Morel and Renvoise, 1979). Abstractly, this technique attempts 

to insert copies of an expression on some paths through the flow graph to increase the number of 

redundant expressions. One example of where it works is with loops. Elimination of partial redundancies 

will insert copies of loop invariant expressions before the loop making the original copies in the loop 

redundant. Surprisingly, this technique works without knowledge of loops. We combine three other 

techniques with code motion: 

1.  A form of strength reduction is included in code motion. The technique is inexpensive to 

implement and has the advantage that it will apply strength reduction in situations where there are 

no loops. 

2.  Load motion is combined with code motion. Moving load operations can be handled as a code 

motion problem by pretending that any store operation is actually a store operation followed by 

the corresponding load operation. So a store operation can be viewed as having the same effect on 

the availability of an expression as a load operation. As will be seen in this example, this will 

increase the number of load operations that can be moved. 

3.  Store operations can also be moved by looking at the flow graph backward and applying the 

same algorithms to the reverse graph that we apply for expressions to the normal flow graph. We 

only look at the reverse graph for store operations. 

In this particular example, code motion only removes the redundant loads of the constants 4 and 8. The 

load of VALUE(I) is moved out of the inner loop. It is not a loop-invariant expression since there is a 

store into VALUE(I) in the loop. However, the observation that a store may be viewed as a store followed 

by a load into the same register means that there is a load of VALUE(I) on each path to the use of 

VALUE(I), making the load within the loop redundant. This gives the code in Figure 2.16.



Figure 2.16  After Code Motion

Now, we can move the store operations forward using partial redundancy on the reverse program flow 

graph, as shown in Figure 2.17. The stores into VALUE(I) and LARGE(I) occurring in the loop can be 

moved to block B4. Although we think of this as a motion out of the loop, the analysis has nothing to do 

with the loop. It depends on the occurrence of these store operations on each path to B4 and the repetitive 

stores that do occur in the loop. Together with dead-code elimination this gives us the final result of the 

optimization phases.





Figure 2.17  After Store Motion

2.8 Limiting Resources

The program flow graph for the procedure has now been transformed into a form suitable for generating 

instructions for the target machine. There is a one-to-one correspondence between the operations in the 

program flow graph and instructions for the target machine. There are still three things to determine 

about the resulting program. 

• Peephole optimization: Multiple instructions must be combined into single instructions that 

have the same effect. This includes the classic peephole optimizations together with 

simplifications involving folding constants into instructions that can use constants. 

• Instruction scheduling: The order of the instructions must be found. By reordering the 

instructions, the delays inherent in instructions that take more than one machine cycle can be 

hidden by the execution of other instructions. 

• Register allocation: The temporaries used for values in the program flow graph must be 

replaced by the use of physical registers. 

Unfortunately, instruction scheduling and register allocation are interdependent. If the compiler reorders 

the instructions to decrease execution time, it will increase the number of physical registers needed to 

hold values. On the other hand, if one allocates the temporaries to physical registers before instruction 

scheduling, then the amount of instruction reordering is limited. This is known as a phase-ordering

problem. There is no natural order for performing instruction scheduling and register allocation.

The LIMIT phase performs the first of these three tasks and prepares the code for instruction scheduling 

and register allocation. It attempts to resolve this problem by performing parts of the register allocation 

problem before instruction scheduling, then allowing instruction scheduling to occur. Register allocation 

then follows, plus a possible second round of instruction scheduling if the register allocator generated 

any instructions itself (spill code).

Before preparing for instruction scheduling and register allocation, the compiler lowers the program 

representation to the most efficient set of instructions. This is the last of the code-lowering phases.

We begin by modifying the flow graph so that each operation corresponds to an operation in the target 

machine. Since the instruction description was chosen to be close to a RISC processor, most instructions 

already correspond to target machine instructions. This step is usually called code generation; however, 

our view of code generation is more diffuse. We began code generation when we built the flow graph, we 

progressed further into code generation with each lowering of the flow graph, and we complete it now by 



guaranteeing the correspondence between instructions in the flow graph and instructions in the target 

machine.



2.9 Instruction Scheduling

A modern RISC processor is implemented using what is called a pipeline architecture. This means that 

each operation is divided into multiple stages, with each stage taking one machine cycle to complete. 

Because each stage takes one cycle, a new instruction may start on each cycle, but it may not complete 

for some number of cycles after its initiation. Unfortunately, most techniques for code generation attempt 

to use a value as soon after its calculation is initiated as possible. This was the preferred technique on 

earlier machines because it limited the number of registers that were needed. However, this order slows 

down the execution on a RISC processor, since the value is not immediately available. The instruction 

scheduler reorders the instructions to initiate instructions earlier than their use so that the processor will 

not be delayed.

Recent RISC processors can start the initiation of several instructions simultaneously. These instructions 

must be independent and use different function units within the processor. The scheduler must form these 

groups of instructions, called packets. All instructions in a packet can be issued simultaneously.

The original instruction schedulers scheduled instructions within a single block, possibly taking into 

account the instructions that ended the preceding blocks. They did this by creating a data structure called 

the instruction dependence graph, which contained the operations as nodes and directed edges between 

two nodes if the first operation must be executed before the second operation. The edges were labeled 

with the number of machine cycles that must occur between the execution of the two instructions. The 

scheduler then performed a topological sort of the instruction dependence graph specialized to minimize 

the total number of cycles that the ordering of instructions required.

Scheduling limited to blocks does not use the multiple instruction-issue character of RISC processors 

effectively. Blocks are usually small, and each instruction within them depends on some other 

instructions in the block. Consider the problem of instruction scheduling as filling in a matrix, with the 

number of columns being the number of instructions that can be issued simultaneously and the number of 

rows being the number of machine cycles it takes to execute the block. Block scheduling will fill in this 

matrix sparsely: There will be many empty slots, indicating that the multiple-issue character of the 

machine is not being used. This is particularly a problem for load, store, multiply, divide, or floating 

point operations which take many cycles to execute. RISC processors usually implement other integer 

operations in one cycle. There are several techniques incorporated in the compiler for ameliorating this 

problem:

• Unroll: Earlier phases of the compiler have performed loop unrolling, which increases the size 

of blocks, giving the block scheduler more chance to schedule the instructions together. 

• Superblock: When there is a point in a loop where two paths join, it is difficult to move 

instructions from after the join point to before it. When the succeeding block in the loop is short, 

the compiler has earlier made a copy of the block so that the joined path is replaced by two 



blocks, joined only at the head of the loop. This transformation is applied at the same time that 

loop unrolling is performed. 

• Move: The normal optimization techniques used for code motion attempt to keep temporaries 

live for as short a sequence of instructions as is possible. When scheduling, we will schedule each 

block separately. For blocks that are executed frequently, we will repeat the code motion 

algorithm, but allow the motion of instructions from one block to another even when there is no 

decrease in execution of the instruction. 

• Trace: Consider the most frequently executed block, B, determined either by heuristics or 

profile information. Find the maximal path including B that involves the most frequently executed 

predecessors and successors of each block on the path. Now consider this path as if it were a 

block, with some modifications to the dependence graphs to ensure proper actions at condition 

branches. See if there are any instructions on this path that can be moved to earlier (or later) 

blocks.

• Software, pipelining: In the special case of a loop that is a single block, software pipelining can 

give a good schedule. Software pipelining uses dependence information provided by the 

dependence graph (not the instruction dependence graph) to overlap the schedules for one 

iteration of the loop with the following iterations. This does not decrease the length of time that 

each iteration takes (it may increase it), but allows the iterations to start more quickly, thereby 

decreasing the execution time of the whole loop. Blocks and loops that can be software pipelined 

are identified before other scheduling occurs and are handled separately. 

During instruction scheduling, some peephole optimization occurs. It can happen during scheduling that 

instructions that were not adjacent have become adjacent, creating situations such as a store followed by 

an immediate load from the same location. It is therefore effective to apply some of the peephole 

optimizations again. 



When instruction scheduling is completed, the order of instructions is fixed and cannot be changed 

without executing the instruction scheduler again. In that case, it may only be necessary to rerun the 

block scheduler. 

We have shrunk the register requirements so the values in registers can fit in the physical registers at 

each point in the flow graph. Now we will reorder the instructions to satisfy the instruction-scheduling 

constraints of the target processor. We will assume a processor such as the Alpha 21164, which can issue 

four instructions on each clock cycle. Many of the integer instructions take one cycle to complete. Most 

floating point operations take four cycles to complete. In any given cycle one can issue one or two load 

instructions or a single store instruction. A store instruction cannot be issued in the same cycle as a load 

instruction. We will assume that the other integer operations can be filled in as necessary. Instructions 

such as integer multiply or floating point divide take a large number of cycles.

The problem is to group the instructions into one to four instruction packets such that all the instructions 

in a packet can be issued simultaneously. The compiler also reorders the instructions in an attempt not to 

use an operand until a number of cycles following the issue of the instruction that computes it to ensure 

that the value is available.

The load and store operations take a variable amount of time, depending on the load on the memory bus 

and whether the values are in caches. In the Alpha 21164, there are two caches on the processor chip, and 

most systems have a further large cache on the processor board. A load instruction takes two cycles for 

the cache nearest the processor, eight cycles in the next cache, twenty cycles in the board cache, and a 

long time if data is in memory. Furthermore, the processor contains hardware to optimize the loading of 

consecutive memory locations. If two load operations are each issued on two consecutive cycles to 

consecutive memory locations, the processor will optimize the use of the memory bus.

It is important that useless branches are at least not counted when determining scheduling. This is 

marked with an asterisk (*) in the cycle location.

There are hardware bypasses so that a compare instruction and a branch instruction can be issued in the 

same cycle. Note that the assignment to SI9 (in B1) can be moved forward eliminating an extra slot. Also 

note that B12 is only reached from the preceding block, so NOPs do not need to be inserted.

Now note that the inner loop starting with block B2 consists of three blocks. The first block is the 

conditional test and the third block updates the iterations. All but one of the computations from the third 

block can be moved to the first block (hoisting), while the remaining instructions can be scheduled more 

effectively by making a copy of the iteration block (super block scheduling).

Note that NOPS were inserted in the middle of the code. The machine picks up four instructions at a 

time, aligned on 16-byte boundaries. It must initiate all instructions in this packet of four instructions 



before going on to the next packet. To execute the instructions in the smallest amount of time, we must 

maximize the number of independent instructions in each packet. The resulting scheduled instructions are 

shown in Figure 2.23.

Figure 2.23  Scheduled Instructions

2.10 Register Allocation

The register allocation phase modifies the program flow graph by replacing temporaries with physical 

registers. There are categories of techniques for performing register allocation on the complete 



procedure. One is based on graph-coloring algorithms. A graph is formed with each temporary being a 

node. An undirected edge exists between two nodes if they cannot occupy the same physical register. 

Register allocation reduces to coloring this graph, where each color represents a different physical 

register.

The alternative method for register allocation is based on bin packing, where there is a bin for each 

physical register. Two temporaries can be allocated to the same bin if there is no point in the program 

where both need to have a value.

Each of these techniques has advantages and disadvantages. The graph-coloring technique is superior 

when considering conditional branching. Since the bin-packing algorithms typically approximate the set 

of points where a temporary holds a value by some data structure where it is easy to take intersections of 

the sets, bin packing does not perform as well as graph coloring with branching.

Bin packing performs better than graph coloring when straight-line code is considered. Since bin packing 

can traverse the blocks as it performs assignment, it can determine when the same register can be reused 

immediately. It can also use information about the operations in the program and their order to decide 

which temporaries to store to memory when too many registers are needed (this can happen even though 

the LIMIT phase has been executed). Graph coloring has no concept of locality of reference.

This compiler’s register allocator combines the two techniques. Because LIMIT has been run, little 

register spilling will occur. Graph coloring is therefore used to assign registers to temporaries that hold 

values at the beginning of some block, in other words, in those situations in which graph coloring 

performs best. A modification of bin packing suggested by Hendron (1993) will be used to schedule 

temporaries within each block.

Previous attempts at splitting the temporaries that are live at the beginning of blocks (global allocation) 

from those that are live within a block (local allocation) have encountered difficulties because 

performing either global or local allocation before the other could affect the quality of register allocation. 

This problem is resolved by the existence of the LIMIT phase, which has performed spilling of global 

temporaries before either allocation occurs.

Note that the presence of LIMIT has eliminated most register spilling during register allocation. It does 

not eliminate all of it. There can be secondary effects of conditional branching that can cause register 

spilling during either graph coloring or bin packing. This situation is unavoidable, since optimal register 

allocation is NP-complete. In the situations in which spilling occurs, the register allocator will insert the 

required store and load operations.



Now we apply register allocation to the example. First the compiler must recompute the points where 

temporaries are live, because instruction scheduling has changed these points (see Figure 2.24). Note that 

the scheduler has introduced a redefinition of a local register, so we need to either do superblock 

scheduling earlier (when we don’t know that it will pay off) or redo right number of names, or locally 

redo right number of names when we create these problems. We only deal with the integer registers here; 

the floating point registers in this case are simple because they all interfere and so one assigns each to a 

different register. 

After the lifetime information for temporaries has been computed, the compiler uses a graph-coloring 

algorithm to allocate the registers that are live at the beginning of some block, or registers which are 

directly assigned to a physical register. The ones assigned to a physical register are preallocated; 

however, they must be considered here to avoid any accidental assignments. The physical registers will 

be named using $0, $1, and so on. Note that the temporaries corresponding to formal parameters are 

assigned to physical registers specified by the calling standard for the target machine. The globally 

assigned registers are listed in Figure 2.25, together with the kind of register. In this case all of the 

registers needed are called scratch registers, which means that the value in the register need not be saved 

and restored if the register is used in the procedure.

Figure 2.24  Live Ranges after Scheduling



Figure 2.25  Global Register Assignments

After that the registers that are live at the beginning of any block have been allocated, we can allocate the 

symbolic registers that are live only within a single block. In this small example there are only a few. In 

realistic programs, these registers greatly outnumber the globally live registers. These local registers are 

listed in Figure 2.26. A register is reused if at all possible because the compiler wants to minimize the 

number of registers used. This avoids the necessity of using a register that is not a scratch register and 

would thus require that a store operation be inserted at the beginning of the procedure to save its value 

and a load inserted at the exit to restore the value. 

The resulting assembly code is shown in Figure 2.27. The temporaries have all been replaced by 

registers. There were no spill instructions inserted, so the instruction schedules have not changed.

Figure 2.26  Local Register Assignments



Figure 2.27  Code after Register Allocation

2.11 Rescheduling

The next phase is a rescheduling phase, which is only executed if the register allocator has changed the 

set of instructions that are executed. This can happen due to either a peephole optimization or the 

introduction of spill code. Neither of these occurred in this case, so the rescheduling operation is ignored. 



If the register allocator generated any instructions, that is, register spilling occurred, then the instruction 

scheduler is executed again, but in this case only on blocks where load or store operations have been 

inserted.

2.12 Forming the Object Module

At last, we near the completion of our task. The instructions have been chosen; the registers have been 

chosen. All that remains is the clerical task of translating this information and the information about 

globally allocated data into an object module. This task includes the insertion of debugging information 

for the debugger. Since our task has been long, I am making light of this last phase. It involves little 

intricate technology. However, it is complex because the structures of object modules are complex and 

undocumented. Every document that I have seen describing object module form has serious errors. So 

this project involves experimental computer science—trying to determine what the linker is expecting. 

This phase will also generate the assembly language listing for the listing file, if it is requested. 
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Chapter 3

Graphs

A prime prerequisite for being a compiler writer is being a “data structure junkie.” One must live, 

breathe, and love data structures, so we will not provide the usual complete list of all background 

mathematics that usually appears in a compiler book. We assume that you have access to any one of a 

number of data structure or introductory compiler writing books, such as Lorho (1984) or Fischer and 

LeBlanc (1988). This design assumes that you are familiar with the following topics, which are 

addressed by each of the data structure books referenced. 

• Equivalence relations and partitions. The compiler frequently computes equivalence relations 

or partitions sets. An equivalence relation is frequently represented as a partition: All of the 

elements that are mutually equivalent are grouped together into a set of elements. Hence the 

whole set can be represented by a set of disjoint sets of elements. Partitions are frequently 

implemented as UNION/FIND data structures. This approach was pioneered by Tarjan (1975). 

• Partial ordering relations on sets. A compiler contains a number of explicit and implicit partial 

orderings. Operands must be computed before the expression for which they are an operand, for 

example. The compiler must be able to represent these relations. 

The topics that are addressed in this chapter concern graphs. A number of the data structures within a 

compiler—the flow graph and the call graph, for instance—are represented as directed graphs. 

Undirected graphs are used to represent the interference relationship for register allocation. Thus these 

topics are addressed here to the extent that the theory is used in implementing the compiler. The topics 

addressed are as follows: 

Data structures for implementing directed and undirected graphs 

Depth-first search and the classification of edges in a directed graph 

Dominators, postdominators, and dominance frontiers 

Computing loops in a graph 

Representing sets 

3.1 Directed Graphs

A directed graph consists of a set of nodes N and a set of edges E. Each edge has a node that is its tail, 

and a node that is its head. Some books define an edge to be an ordered pair of nodes—tail and head; 

however, this makes the description of the compiler more difficult. It is possible to have two edges with 

the same tail and head. In a flow graph containing a C switch statement or a Pascal case statement, two 

different alternatives that have the same statement bodies will create two edges having identical tails and 

heads.


